Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Homocysteine increases the expression of vascular endothelial growth factor by a mechanism involving endoplasmic reticulum stress and transcription factor ATF4.

Vascular endothelial growth factor (VEGF) plays a key role in the development and progression of diabetic retinopathy. We previously demonstrated that amino acid deprivation and other inducers of endoplasmic reticulum-stress (ER stress) up-regulate the expression of VEGF in the retinal-pigmented epithelial cell line ARPE-19. Because homocysteine causes ER stress, we hypothesized that VEGF expression is increased by ambient homocysteine. dl-Homocysteine-induced VEGF expression was investigated in confluent ARPE-19 cultures. Northern analysis showed that homocysteine increased steady state VEGF mRNA levels 4.4-fold. Other thiol-containing compounds, including l-homocysteine thiolactone and DTT, induced VEGF expression 7.9- and 8.8-fold. Transcriptional run-on assays and mRNA decay studies demonstrated that the increase in VEGF mRNA levels was caused by increased transcription rather than mRNA stabilization. VEGF mRNA induction paralleled that of the ER-stress gene GRP78. Homocysteine treatment caused transient phosphorylation of eIF2alpha and an increase in ATF4 protein level. Overexpression of a dominant-negative ATF4 abolished the VEGF response to homocysteine treatment and to amino acid deprivation. VEGF mRNA expression by ATF4-/- MEF did not respond to homocysteine treatment and the response was restored with expression of wild-type ATF4. These studies indicate that expression of the pro-angiogenic factor VEGF is increased by homocysteine and other thiol-containing reductive compounds via ATF4-dependent activation of VEGF transcription.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app