JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Electronic transitions of guanine tautomers, their stacked dimers, trimers and sodium complexes.

Planar and nonplanar geometries of the keto-N9H and keto-N7H tautomers of the guanine base of DNA as well as the hydrogen bonded complexes of these species with three water molecules each were optimized using the density functional theory at the B3LYP/6-31G** level. Geometries of the isolated bases were also optimized using the ab initio approach at the MP2/6-31G** level. The isolated keto-N9H and keto-N7H tautomers as well as their hydrogen bonded complexes with three water molecules each were solvated in bulk water employing the polarized continuum model (PCM) of the self-consistent reaction field theory (SCRF). Stacked dimers and trimers of both the tautomers of guanine were generated by placing the planar forms of the species at a fixed distance of 3.5 A from the neighboring one and rotating one molecule with respect to the other by 110 degrees for the keto-N9H form and 90 degrees for the keto-N7H form which corresponded to total energy minima at the B3LYP/6-31G** level. Geometry optimization for the cation of the monomer of guanine was performed at the same level of theory, and its solvation in bulk water was treated using the PCM model of the SCRF theory. The geometries of complexes of the two tautomers of guanine with a Na+ ion each were optimized at the B3LYP/6-31G** level, and the Na+ ion is predicted to bind with the keto-N9H tautomer preferentially. While the complex of the keto-N7H form of guanine with three water molecules in gas phase is slightly more stable than the corresponding complex of the keto-N9H form of guanine, the reverse is true in bulk water. Stacking interactions enhance the relative stability of the keto-N9H tautomer over that of the keto-N7H tautomer, suggesting that in bulk solutions, the former would be dominant. Electronic spectra of the isolated tautomers of guanine, those of their complexes with three water molecules each, the (keto-n9h and keto-n7h) cation of guanine, the complexes of the tautomers with a Na+ ion each, the stacked dimers and trimers of the two tautomers were calculated using configuration interaction involving single electron excitations (CIS). The relative absorption intensities of the two tautomers of guanine near 275 and 248 nm in the monomer, dimer, and trimer are predicated to be in the opposite order. Thus the absorption intensity oscillation observed using a guanine aqueous solution can be explained in terms of oscillation of relative populations of the two tautomers of the molecule. The 248 nm absorption peak would be appreciably red-shifted on formation of the cation of guanine. Binding of the Na+ ion with the two tautomers of guanine reduces intensities of their transitions appreciably and also it causes large red-shifts in the same.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app