Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Mitochondrial localization of ERalpha and ERbeta in human MCF7 cells.

We observed previously that estrogen treatment increased the transcript levels of several mitochondrial DNA (mtDNA)-encoded genes for mitochondrial respiratory chain (MRC) proteins and MRC activity in rat hepatocytes and human Hep G2 cells. Others have reported detection of estrogen receptors (ER), ERalpha and ERbeta, in mitochondria of rabbit ovarian and uterine tissue. In this study, we have extended these observations. Using cellular fractionation and Western blot with ERalpha- and ERbeta-specific antibodies, we observed that ERalpha and ERbeta are present in mitochondria of human MCF7 cells and that the mitochondrial ERalpha and ERbeta account for 10 and 18%, respectively, of total cellular ERalpha and ERbeta in 17beta-estradiol (E(2))-treated MCF7 cells. We also found that E(2) significantly enhanced the amounts of mitochondrial ERalpha and ERbeta in a time- and concentration-dependent manner and that these effects are accompanied by a significant increase in the transcript levels of mtDNA-encoded genes, i.e., cytochrome c oxidase subunits I and II. Moreover, we demonstrated that these E(2)-mediated effects were inhibited by the pure ER antagonist, ICI-182780, indicating the involvement of ERs. Using immunohistochemistry with confocal microscopy and immunogold electron microscopy, we demonstrated that ERalpha and ERbeta are located within the MCF7 cell mitochondrial matrix. Computer analysis identified a putative internal mitochondrial targeting peptide signal within human ERbeta, suggesting an inherent potential for ERbeta to enter mitochondria. These findings confirm the observations of others and provide additional support for this novel localization of the ERs and for a potentially important role of the ER in the regulation of mtDNA transcription.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app