Journal Article
Review
Add like
Add dislike
Add to saved papers

Pharmacological modulation of cholesteryl ester transfer protein, a new therapeutic target in atherogenic dyslipidemia.

In mediating the transfer of cholesteryl esters (CE) from antiatherogenic high density lipoprotein (HDL) to proatherogenic apolipoprotein (apo)-B-containing lipoprotein particles (including very low density lipoprotein [VLDL], VLDL remnants, intermediate density lipoprotein [IDL], and low density lipoprotein [LDL]), the CE transfer protein (CETP) plays a critical role not only in the reverse cholesterol transport (RCT) pathway but also in the intravascular remodeling and recycling of HDL particles. Dyslipidemic states associated with premature atherosclerotic disease and high cardiovascular risk are characterized by a disequilibrium due to an excess of circulating concentrations of atherogenic lipoproteins relative to those of atheroprotective HDL, thereby favoring arterial cholesterol deposition and enhanced atherogenesis. In such states, CETP activity is elevated and contributes significantly to the cholesterol burden in atherogenic apoB-containing lipoproteins. In reducing the numbers of acceptor particles for HDL-derived CE, both statins (VLDL, VLDL remnants, IDL, and LDL) and fibrates (primarily VLDL and VLDL remnants) act to attenuate potentially proatherogenic CETP activity in dyslipidemic states; simultaneously, CE are preferentially retained in HDL and thereby contribute to elevation in HDL-cholesterol content. Mutations in the CETP gene associated with CETP deficiency are characterized by high HDL-cholesterol levels (>60 mg/dL) and reduced cardiovascular risk. Such findings are consistent with studies of pharmacologically mediated inhibition of CETP in the rabbit, which argue strongly in favor of CETP inhibition as a valid therapeutic approach to delay atherogenesis. Consequently, new organic inhibitors of CETP are under development and present a potent tool for elevation of HDL in dyslipidemias involving low HDL levels and premature coronary artery disease, such as the dyslipidemia of type II diabetes and the metabolic syndrome. The results of clinical trials to evaluate the impact of CETP inhibition on premature atherosclerosis are eagerly awaited.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app