JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

B-type natriuretic peptide exerts broad functional opposition to transforming growth factor-beta in primary human cardiac fibroblasts: fibrosis, myofibroblast conversion, proliferation, and inflammation.

The natriuretic peptides, including human B-type natriuretic peptide (BNP), have been implicated in the regulation of cardiac remodeling. Because transforming growth factor-beta (TGF-beta) is associated with profibrotic processes in heart failure, we tested whether BNP could inhibit TGF-beta-induced effects on primary human cardiac fibroblasts. BNP inhibited TGF-beta-induced cell proliferation as well as the production of collagen 1 and fibronectin proteins as measured by Western blot analysis. cDNA microarray analysis was performed on RNA from cardiac fibroblasts incubated in the presence or absence of TGF-beta and BNP for 24 and 48 hours. TGF-beta, but not BNP, treatment resulted in a significant change in the RNA profile. BNP treatment resulted in a remarkable reduction in TGF-beta effects; 88% and 85% of all TGF-beta-regulated mRNAs were affected at 24 and 48 hours, respectively. BNP opposed TGF-beta-regulated genes related to fibrosis (collagen 1, fibronectin, CTGF, PAI-1, and TIMP3), myofibroblast conversion (alpha-smooth muscle actin 2 and nonmuscle myosin heavy chain), proliferation (PDGFA, IGF1, FGF18, and IGFBP10), and inflammation (COX2, IL6, TNFalpha-induced protein 6, and TNF superfamily, member 4). Lastly, BNP stimulated the extracellular signal-related kinase pathway via cyclic guanosine monophosphate-dependent protein kinase signaling, and two mitogen-activated protein kinase kinase inhibitors, U0126 and PD98059, reversed BNP inhibition of TGF-beta-induced collagen-1 expression. These findings demonstrate that BNP has a direct effect on cardiac fibroblasts to inhibit fibrotic responses via extracellular signal-related kinase signaling, suggesting that BNP functions as an antifibrotic factor in the heart to prevent cardiac remodeling in pathological conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app