COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Enhanced generation of intracellular Abeta42 amyloid peptide by mutation of presenilins PS1 and PS2.

The accumulation of amyloid beta-peptide (Abeta) in the brain is a critical pathological process in Alzheimer's disease (AD). Recent studies have implicated intracellular Abeta in neurodegeneration in AD. To investigate the generation of intracellular Abeta, we established human neuroblastoma SH-SY5Y cells stably expressing wild-type amyloid precursor protein (APP), Swedish mutant APP, APP plus presenilin 1 (PS1) and presenilin 2 (PS2; wild-type or familial AD-associated mutant), and quantified intracellular Abeta40 and Abeta42 in formic acid extracts by sensitive Western blotting. Levels of both intracellular Abeta40 and Abeta42 were 2-3-fold higher in cells expressing Swedish APP, compared with those expressing wild-type APP. Intracellular Abeta42/Abeta40 ratios were approximately 0.5 in these cells. These ratios were increased markedly in cells expressing mutant PS1 or PS2 compared with those expressing their wild-type counterparts, consistent with the observed changes in secreted Abeta42/Abeta40 ratios. High total levels of intracellular Abeta were observed in cells expressing mutant PS2 because of a marked elevation of Abeta42. Immunofluorescence staining additionally revealed more intense Abeta42 immunoreactivity in mutant PS2-expressing cells than in wild-type cells, which was partially colocalized with immunoreactivity for the trans-Golgi network and endosomes. The data collectively indicate that PS mutations promote the accumulation of intracellular Abeta42, which appears to be localized in multiple subcellular compartments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app