JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

The differential impact of p16(INK4a) or p19(ARF) deficiency on cell growth and tumorigenesis.

Oncogene 2004 January 16
Mounting genetic evidence suggests that each product of the Ink4a/Arf locus, p16(INK4a) and p19(ARF), possesses tumor-suppressor activity (Kamijo et al., 1997; Krimpenfort et al., 2001; Sharpless et al., 2001a). We report the generation and characterization of a p19(ARF)-specific knockout allele (p19(ARF)-/-) and direct comparison with mice and derivative cells deficient for p16(INK4a), both p16(INK4a) and p19(ARF), and p53. Like Ink4a/Arf-/- murine embryo fibroblasts (MEFs), p19(ARF)-/- MEFs were highly susceptible to oncogenic transformation, exhibited enhanced subcloning efficiency at low density, and resisted both RAS- and culture-induced growth arrest. In contrast, the biological profile of p16(INK4a)-/- MEFs in these assays more closely resembled that of wild-type cells. In vivo, however, both p19(ARF)-/- and p16(INK4a)-/- animals were significantly more tumor prone than wild-type animals, but each less so than p53-/- or Ink4a/Arf-/- animals, and with differing tumor spectra. These data confirm the predominant role of p19(ARF) over p16(INK4a) in cell culture-based assays of MEFs, yet also underscore the importance of the analysis of tumor suppressors across many cell types within the organism. The cancer-prone conditions of mice singly deficient for either p16(INK4a) or p19(ARF) agree with data derived from human cancer genetics, and reinforce the view that both gene products play significant and nonredundant roles in suppressing malignant transformation in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app