Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Single cGMP-activated Ca(+)-dependent Cl(-) channels in rat mesenteric artery smooth muscle cells.

The present study describes the single channel properties of a novel cGMP-activated Ca(2+)-dependent Cl(-) channel in rat mesenteric artery smooth muscle cells. Single channel currents were recorded in cell-attached patches in the presence of 8 Br cGMP in response to the addition of caffeine or noradrenaline and in both outside-out and inside-out patches when the internal patch surface was bathed in cGMP and Ca(2+). The channels were permeable to Cl(-) ions with an anion permeability sequence of SCN(-) (1.7) > Cl(-) (1.0) > I(-) (0.6). Single channel mean open probability (NP(o)) was independent of voltage and the channels displayed three conductance levels of 15, 35 and 55 pS. cGMP was required for channel activation and the single channel NP(o) increased sharply with raised [Ca(2+)](i), maximal activation occurring at a [Ca(2+)](i) of about 100 nM. The relationship between NP(o) and cGMP concentration was voltage independent and could be fitted by the Hill equation giving a K(d) of about 3 microM and a Hill coefficient (n(H)) of 3. cGMP- and Ca(2+)-dependent channel currents were inhibited by 10 microM ZnCl(2) but niflumic acid, an inhibitor of Ca(2+)-activated Cl(-) channels, had no effect. Inhibition of cGMP-dependent protein kinase activity by the cGMP-dependent protein kinase inhibitor KT5823 or replacement of ATP by AMP-PNP reduced NP(o), while activation of cGMP-dependent protein kinase by guanosine 3', 5'-cyclic monophosphate, beta-phenyl-1, N(2)-etheno-8-bromo-sodium salt (8 Br PET cGMP) produced a significant increase in single channel NP(o). It is likely that these single channel currents underlie the noradrenaline-activated inward current important for vasomotion in these resistance arteries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app