JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

The calcineurin/nuclear factor of activated T cells signaling pathway regulates osteoclastogenesis in RAW264.7 cells.

Although best known for its role in T lymphocyte activation, the calcineurin/nuclear factor of activated T cells (NFAT) signaling pathway is also known to be involved in a wide range of other biological responses in a variety of different cell types. Here we have investigated the role of the calcineurin/NFAT signaling pathway in the regulation of osteoclast differentiation. Osteoclasts are bone-resorbing multinucleated cells that are derived from the monocyte/macrophage cell lineage after stimulation with a member of the tumor necrosis factor family of ligands known as receptor activator of nuclear factor-kappaB ligand (RANKL). We now report that inhibition of calcineurin with either the immunosuppressant drugs cyclosporin A and FK506, or the retrovirally mediated ectopic expression of a specific calcineurin inhibitory peptide, all potently inhibit the RANKL-induced differentiation of the RAW264.7 monocyte/macrophage cell line into mature multinucleated osteoclasts. In addition, we find that NFAT family members are expressed in RAW264.7 cells and that their expression is up-regulated in response to RANKL stimulation. Most importantly, we find that ectopic expression of a constitutively active, calcineurin-independent NFATc1 mutant in RAW264.7 cells is sufficient to induce these cells to express an osteoclast-specific pattern of gene expression and differentiate into morphologically distinct, multinucleated osteoclasts capable of inducing the resorption of a physiological mineralized matrix substrate. Taken together, these data define calcineurin as an essential downstream effector of the RANKL-induced signal transduction pathway leading toward the induction of osteoclast differentiation and furthermore, indicate that the activation of the NFATc1 transcription factor is sufficient to initiate a genetic program that results in the specification of the mature functional osteoclast cell phenotype.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app