Critical issues in hematology: anemia, thrombocytopenia, coagulopathy, and blood product transfusions in critically ill patients

Reed E Drews
Clinics in Chest Medicine 2003, 24 (4): 607-22
Systematic evaluations of anemia, thrombocytopenia, and coagulopathy are essential to identifying and managing their causes successfully. In all cases, clinicians should evaluate RBC measurements alongside WBC and platelet counts and WBC differentials. Multiple competing factors may coexist; certain factors affect RBCs independent of those that affect WBCs or platelets. Ideally, clinicians should examine the peripheral blood smear for morphologic features of RBCs, WBCs, and platelets that provide important clues to the cause of the patient's hematologic disorder. Thrombocytopenia arises from decreased platelet production, increased platelet destruction, or dilutional or distributional causes. Drug-induced thrombocytopenias present diagnostic challenges, because many medicines can cause thrombocytopenia and critically ill patients often receive multiple medications. If they suspect type II HIT, clinicians must promptly discontinue all heparin sources, including LMWHs, without awaiting laboratory confirmation, to avoid thrombotic sequelae. Because warfarin anticoagulation induces acquired protein C deficiency, thereby exacerbating the prothrombotic state of type II HIT, warfarin should be withheld until platelet counts increase to more than 100,000/microL and type II HIT is clearly resolving. The presence of a consumptive coagulopathy in the setting of thrombocytopenia supports a diagnosis of DIC, not TTP-HUS, and is demonstrated by decreasing serum fibrinogen levels, and increasing TTs, PTs, aPTTs, and fibrin degradation products. Increasing D-dimer, levels are the most specific DIC parameter and reflect fibrinolysis of cross-linked fibrin. Elevated PTs or a PTTs can result from the absence of factors or the presence of inhibitors. Clinicians should suspect factor inhibitors when the prolonged PT or aPTT does not correct or only partially corrects following an immediate assay of a 1:1 mix of patient and normal plasma. In addition to factor inhibitors, antiphospholipid antibodies (e.g., lupus anticoagulant) can produce a prolonged aPTT that does not correct with normal plasma but is overcome by adding excess phospholipid or platelets. Paradoxically, a tendency to thrombosis, not bleeding, accompanies lupus anticoagulants and the antiphospholipid antibody syndrome. Transfusion of red blood cells, platelets, or plasma products is sometimes warranted, but clinicians must carefully weigh potential benefits against known risks. In critically ill patients, administering RBCs can enhance oxygen delivery to tissues. Among euvolemic patients who do not have ischemic heart disease, guidelines recommend a transfusion threshold of HGB levels in the range of 6.0 to 8.0 g/dL; patients who have HGB that is at least 10.0 g/dL are unlikely to benefit from blood transfusion. The use of rHuEPO to increase erythropoiesis offers an alternative to RBC transfusion, assuming normal, responsive progenitor cells and adequate iron, folate, and cobalamin stores. Future research should examine whether clinical outcomes from rHuEPO use in critically ill patients are important and cost-effective. Because platelets play an instrumental role in primary hemostasis, platelet transfusions are often important in managing patients who are bleeding or at risk of bleeding with thrombocytopenia or impaired platelet function. Platelet transfusions carry risks, and decisions to transfuse platelets must consider clinical circumstances. Most important, platelet transfusions are generally contraindicated if the underlying disorder is TTP or type II HIT, because platelet transfusion in these settings may fuel thrombosis and worsen clinical signs and symptoms. Plasma products can correct hemostasis when bleeding arises from malfunction, consumption, or underproduction of plasma coagulation proteins. Choice of plasma product for transfusion depends on clinical circumstances. FFP is the most commonly used plasma product to correct clotting factor deficiencies, particularly coagulopathies that are attributable to multiple clotting factor deficiency states as in liver disease, DIC, or warfarin anticoagulation. PCC or rFVIIa that is administered in small volumes may provide advantages over FFP when coagulopathies require quick reversal without risk of volume overload. Factor concentrates can replace specific factor deficiencies. Recombinant FVIIa bypasses inhibitors to factors VIII and IX and vWF. Use of rFVIIa in managing hemostatic abnormalities from severe liver dysfunction; extensive surgery, trauma, or bleeding; excessive warfarin anticoagulation; and certain platelet disorders requires further study to determine optimal and cost-effective dosing regimens. Recombinant activated protein C reduces mortality from severe sepsis that is associated with organ dysfunction in adults who are at high risk for death (APACHE scores of at least 25). In severe sepsis, levels of protein C decrease, as do fibrinogen and platelet levels. Because of its anticoagulant effect, however, drotrecogin alfa may induce bleeding. Guidelines for drotrecogin alfa use must take into account bleeding risks.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"