REVIEW
Add like
Add dislike
Add to saved papers

Molecular genetics of Xeroderma pigmentosum variant.

Xeroderma pigmentosum (XP) is an autosomal recessive disease characterized by sun sensitivity, early onset of freckling and subsequent neoplastic changes on sun-exposed skin. Skin abnormalities result from an inability to repair UV-damaged DNA because of defects in the nucleotide excision repair (NER) machinery. Xeroderma pigmentosum is genetically heterogeneous and is classified into seven complementation groups (XPA-XPG) that correspond to genetic alterations in one of seven genes involved in NER. The variant type of XP (XPV), first described in 1970 by Ernst G. Jung as 'pigmented xerodermoid', is caused by defects in the post replication repair machinery while NER is not impaired. Identification of the XPV gene was only achieved in 1999 by biochemical purification and sequencing of a protein from HeLa cell extracts complementing the PRR defect in XPV cells. The XPV protein, polymerase (pol)eta, represents a novel member of the Y family of bypass DNA polymerases that facilitate DNA translesion synthesis. The major function of (pol)eta is to allow DNA translesion synthesis of UV-induced TT-dimers in an error-free manner; it also possesses the capability to bypass other DNA lesions in an error-prone manner. Xeroderma pigmentosum V is caused by molecular alterations in the POLH gene, located on chromosome 6p21.1-6p12. Affected individuals are homozygous or compound heterozygous for a spectrum of genetic lesions, including nonsense mutations, deletions or insertions, confirming the autosomal recessive nature of the condition. Identification of POLH as the XPV gene provides an important instrument for improving molecular diagnostics in XPV families.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app