JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Transcript identification and profiling during salt stress and recovery of Populus euphratica.

Tree Physiology 2004 March
Populus euphratica Oli. is a salt-tolerant species that can cope with up to 450 mM NaCl under hydroponic conditions and can tolerate high accumulations of Na+ and Cl- in roots and leaves when grown in 300 mM NaCl. Transcript responses to salt stress and recovery were monitored by microarray hybridization of 315 cDNAs preselected by suppression subtractive hybridization. Transcripts of a heat-shock protein and a hydroxyproline-rich glycoprotein accumulated 1.5 and 3 h, respectively, after adding 300 mM NaCl to the culture medium. Transcripts significantly up-regulated by salt stress included ionic and osmotic homeostasis elements such as magnesium transporter-like protein, syntaxin-like protein, seed imbibition protein and plasma membrane intrinsic protein; metabolism regulators like cytochrome P450, zinc finger protein, cleavage factor and aminotransferase; and the photosynthesis-activating enzyme Rubisco activase and photorespiration-related glycolate oxidase. Several photosynthesis-related transcripts were down-regulated in response to 72 h of salt stress but were up-regulated after long-term recovery (48 h). Sucrose synthase, ABC transporter, calmodulin, Pop3 peptide and aquaporin appeared to be actively involved in the process of plant recovery from salt stress. Several transcripts encoding proteins of unknown function were regulated by salt stress. Selected transcripts exhibiting altered transcript profiles in response to salt stress were also analyzed by real-time quantitative PCR. Transcript analysis during salt stress and recovery of this woody species revealed several genes and corresponding proteins deserving special attention in future studies of salt tolerance in woody species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app