IN VITRO
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Expression of nitric oxide synthase and effect of substrate manipulation of the nitric oxide pathway in mouse ovarian follicles.

Human Reproduction 2004 January
BACKGROUND: Nitric oxide (NO) is a cell messenger with multiple actions in different biological systems, implicated in the control of follicle and oocyte function. NO is formed from L-arginine by isoforms of nitric oxide synthase (NOS) via NG-hydroxy-L-arginine, with L-citrulline as a byproduct. This study aimed to show how modulation of NO by manipulating NOS substrates would affect mouse follicle growth and ovulation in vitro, where vascular effects of NO are attenuated.

METHODS: Immunohistochemistry [endothelial (eNOS) and inducible (iNOS)] and in situ hybridization (iNOS) were applied on mouse ovaries. Cultured follicles were also stained for iNOS by immunohistochemistry. For follicles cultured in the presence or absence of L-arginine, the ability of L-citrulline or NG-hydroxy-L-arginine to substitute for L-arginine was assessed in terms of follicle growth and ovulation.

RESULTS: iNOS and eNOS were localized in oocytes and theca, with some staining in granulosa. iNOS mRNA occurred predominantly in granulosa and oocyte. Omission of L-arginine significantly reduced follicle survival and ovulation. Partial compensation for L-arginine withdrawal was achieved with L-citrulline and NG-hydroxy-L- arginine. Specific abnormalities of follicle growth were noted.

CONCLUSIONS: NOS is present in mouse follicles, and its action is necessary at a local level for normal follicle development in vitro. Reduced growth, persistent basement membranes and reduced ovulation were associated with in vitro disruption of NO.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app