The role of activated MEK-ERK pathway in quercetin-induced growth inhibition and apoptosis in A549 lung cancer cells

T T T Nguyen, E Tran, T H Nguyen, P T Do, T H Huynh, H Huynh
Carcinogenesis 2004, 25 (5): 647-59
Dietary phytochemicals have been shown to be protective against various types of cancers. However, the precise underlying protective mechanisms are poorly understood. In the present study, we report that treatment of A549 cells with quercetin resulted in a dose-dependent reduction in cell viability and DNA synthesis with the rate of apoptosis equivalent to 1.2 +/- 0.8, 6.3 +/- 0.9, 16.5 +/- 1.5, 36.4 +/- 2.6 and 42.5 +/- 5.8% on treatment with 0.1% dimethylsulfoxide, 14.5, 29.0, 43.5 and 58.0 micro M quercetin, respectively. Concomitantly, quercetin treatments led to a 1.1-, 1.1-, 2.5- and 3.5-fold increase in Bax. Similar elevations were also observed in Bad, which increased 1.1-, 2.1-, 2.2- and 2.3-fold, respectively, as compared with control. While Bcl-2 was decreased by 30%, Bcl-x(L) was elevated in a dose-dependent fashion. Quercetin also induced the cleavage of caspase-3, caspase-7 and PARP (poly ADP-ribose polymerase). While Akt-1 and phosphorylated Akt-1 were inhibited, the extracellular signal-regulated kinase (ERK) was phosphorylated following quercetin treatment in a dose-dependent fashion. Phosphorylation of ERK and c-Jun occurred at 3 h and was sustained over 14 h. Phosphorylation of MEK1/2 was increased in concordance with ERK activation. Quercetin-induced phosphorylation of c-Jun N-terminal kinase (JNK) and cleavage of caspase-3 occurred 6 h after quercetin exposure and before cleavage of caspase-7 and PARP was detected. Inhibition of MEK1/2 but not PI-3 kinase, p38 kinase or JNK abolished quercetin-induced phosphorylation of c-Jun, cleavage of caspase-3 and -7, cleavage of PARP and apoptosis. Inhibition of caspase activation completely blocked quercetin-induced apoptosis. Expression of constitutively activated MEK1 in A549 cells led to activation of caspase-3 and apoptosis. The results suggest that in addition to inactivation of Akt-1 and alteration in the expression of the Bcl-2 family of proteins, activation of MEK-ERK is required for quercetin-induced apoptosis in A549 lung carcinoma cells.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"