Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Involvement of the brain serotonergic system in the locomotor stimulant effects of chlorpheniramine in Wistar rats: implication of postsynaptic 5-HT1A receptors.

Antihistamines, such as chlorpheniramine (CPA), are lipophilic agents which readily cross the blood-brain barrier, producing sedation in 10-25% of users. However, with excessive doses instead of sedation a stimulating action has been reported. The aim of the present study was to investigate the influence of CPA on the locomotor activity of the rat in relation to its effects on brain biogenic monoamines. Wistar rats were given CPA (40 mg/kg, i.p.) and locomotor activity was measured in a photocell cage. Body temperature was also monitored. In addition, in three brain subregions (striatum, hypothalamus, and midbrain), the levels of 5-HT, NA, DA, as well as their metabolites, were determined by HPLC. Soon after injection, CPA produced a significant increase in locomotor activity, while a hypothermic response was also induced. In striatum and hypothalamus, which are known to be rich in postsynaptic 5-HT1A receptors, we found a significant time-dependent increase of 5-HT, correlated with the clearly enhanced locomotor activity of the animals. On the contrary, in midbrain, where presynaptic 5-HT1A receptors are dominating, no changes could be detected in 5-HT. In all three brain regions measured, 5-HIAA levels were decreased. The levels of the other brain monoamines were only marginally affected. In support of a role in receptor specificity, pretreatment with the 5-HT1A receptor agonist 8-OH-DPAT (1.25 mg/kg, i.p., two times) or with the 5-HT(1A/B) receptor antagonist pindolol (30 mg/kg, i.p., two times), enhanced or blocked, respectively, the hyperlocomotion induced by CPA. These findings suggest that the central serotonergic system may play a key role in the locomotor stimulant effects of CPA in the rat. Moreover, this behavioral component of CPA seems to be primarily mediated via the postsynaptic 5-HT1A receptors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app