Add like
Add dislike
Add to saved papers

A new tool for routine testing of cellular protein expression: integration of cell staining and analysis of protein expression on a microfluidic chip-based system.

The key benefits of Lab-on-a-Chip technology are substantial time savings via an automation of lab processes, and a reduction in sample and reagent volumes required to perform analysis. In this article we present a new implementation of cell assays on disposable microfluidic chips. The applications are based on the controlled movement of cells by pressure-driven flow in microfluidic channels and two-color fluorescence detection of single cells. This new technology allows for simple flow cytometric studies of cells in a microfluidic chip-based system. In addition, we developed staining procedures that work "on-chip," thus eliminating time-consuming washing steps. Cells and staining-reagents are loaded directly onto the microfluidic chip and analysis can start after a short incubation time. These procedures require only a fraction of the staining reagents generally needed for flow cytometry and only 30,000 cells per sample, demonstrating the advantages of microfluidic technology. The specific advantage of an on-chip staining reaction is the amount of time, cells, and reagents saved, which is of great importance when working with limited numbers of cells, e.g., primary cells or when needing to perform routine tests of cell cultures as a quality control step. Applications of this technology are antibody staining of proteins and determination of cell transfection efficiency by GFP expression. Results obtained with microfluidic chips, using standard cell lines and primary cells, show good correlation with data obtained using a conventional flow cytometer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app