Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Dietary-induced obesity and hypothalamic infertility in female DBA/2J mice.

Endocrinology 2004 March
The effects of diet and adiposity have been implicated in disturbances of female reproductive function. In an effort to better elucidate the relationship between obesity and female fertility, we analyzed the effect of increasing dietary fat content on body composition, insulin sensitivity, and pregnancy rates in two common inbred mouse strains, DBA/2J and C57BL/6J. After 16 wk, females of both strains on the high fat diet developed glucose intolerance and insulin resistance, but only the female DBA/2J mice developed dietary-induced obesity and hyperleptinemia. The high fat diet was associated with more than a 60% decrease in natural pregnancy rates of female DBA/2J mice, whereas the fertility of female C57BL/6J mice was unaffected. Despite developing a similar degree of obesity, insulin resistance, and hyperleptinemia, male DBA/2J mice did not manifest diminished fertility. Obese female DBA/2J mice achieved normal ovulatory responses and pregnancy rates after exogenous gonadotropin stimulation, suggesting their fertility defect to be central in origin. Real-time PCR quantification of hypothalamic cDNA revealed a 100% up-regulation of neuropeptide Y and a 50% suppression of GnRH expression accompanied by a 95% attenuation of leptin receptor type B expression in obese female DBA/2J mice. These findings suggest that obesity-associated hyperleptinemia, and not insulin resistance or increased dietary fat per se, gradually induces central leptin resistance, increases hypothalamic neuropeptide Y-ergic tone, and ultimately causes hypothalamic hypogonadism. The data establish high fat-fed female DBA/2J mice as a wild-type murine model of obesity-related infertility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app