Comparative Study
Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Inhibition of MEK/ERK 1/2 pathway reduces pro-inflammatory cytokine interleukin-1 expression in focal cerebral ischemia.

Brain Research 2004 January 17
It has been proposed that mitogen-activated protein kinase (MAPK) pathways may play a role in the regulation of pro-inflammatory cytokines, such as interlukine-1, during cerebral ischemia. Our previous study showed that extracellular-signal-regulated kinases 1 and 2 (ERK 1/2) were activated during focal cerebral ischemia in mice [J. Cereb. Blood Flow Metab. 20 (2000) 1320]. However, the effect of ERK 1/2 activation in focal cerebral ischemia is still unclear. In this study we reported that in vivo phospho-ERK 1/2 expression increased following 30 min of middle cerebral artery occlusion (MCAO) in the mouse brain in both the ischemic core and perifocal regions. Western blot analysis and immunohistochemistry demonstrated that pro-treatment with 1,4-diamino-2,3-dicyano-1,4-bis butadiene (U0126) [J. Biol. Chem. 273 (1998) 18623] could significantly inhibit mouse brain phospho-MEK 1/2 and phospho-ERK 1/2 expression after 1-2 h of MCAO (p<0.05). Compared to the control group of mice, brain infarct volume was significantly decreased after 24 h of MCAO in the U0126-treated mice (27+/-6 vs. 46+/-9 mm(2), p<0.05). Inhibition of the MEK/ERK 1/2 pathway also prevented downstream kinase Elk-1 phosphorylation, and further reduced cytokine IL-1beta mRNA, but not TNFalpha, IL-1alpha, or chemokine MIP-1alpha mRNA expression. Our data demonstrates that in vivo the close linking of MEK 1/2, ERK 1/2, Elk-1, and IL-1 mRNA expression in the cerebral ischemia animals suggests that ERK 1/2 pathway activation is important in pro-inflammatory cytokine IL-1beta signaling, which induces an inflammatory response and exacerbates ischemic brain injury. Inhibiting the ERK 1/2 pathway may therefore provide a novel approach for the reduction of ischemia-induced IL-1beta overexpression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app