Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Hypertriglyceridemia in lecithin-cholesterol acyltransferase-deficient mice is associated with hepatic overproduction of triglycerides, increased lipogenesis, and improved glucose tolerance.

Lecithin-cholesterol acyltransferase deficiency is frequently associated with hypertriglyceridemia (HTG) in animal models and humans. We investigated the mechanism of HTG in the ldlr-/- x lcat-/- (double knockout (dko)) mice using the ldlr-/- x lcat+/+ (knock-out (ko)) littermates as control. Mean fasting triglyceride (TG) levels in the dko mice were elevated 1.75-fold compared with their controls (p < 0.002). Both the very low density lipoprotein and the low density lipoprotein/intermediate density lipoprotein fractions separated by fast protein liquid chromatography were TG-enriched in the dko mice. In vitro lipolysis assay revealed that the dko mouse very low density lipoprotein (d < 1.019 g/ml) fraction separated by ultracentrifugation was a more efficient substrate for lipolysis by exogenous bovine lipoprotein lipase. Post-heparin lipoprotein lipase activity was reduced by 61% in the dko mice. Hepatic TG production rate, determined after intravenous Triton WR1339 injection, was increased 8-fold in the dko mice. Hepatic mRNA levels of sterol regulatory element binding protein-1 (srebp-1) and its target genes acetyl-CoA carboxylase-1 (acc-1), fatty acid synthase (fas), and stearoyl-CoA desaturase-1 (scd-1) were significantly elevated in the dko mice compared with the ko control. The hepatic mRNA levels of LXRalpha (lxralpha) and its target genes including angiopoietin-like protein 3 (angptl-3) in the dko mice were unchanged. Fasting glucose and insulin levels were reduced by 31 and 42%, respectively in the dko mice, in conjunction with a 49% reduction in hepatic pepck-1 mRNA (p = 0.014). Both the HTG and the improved fasting glucose phenotype seen in the dko mice are at least in part attributable to an up-regulation of the hepatic srebp-1c gene.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app