JOURNAL ARTICLE

The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson's disease

Rina Bandopadhyay, Ann E Kingsbury, Mark R Cookson, Andrew R Reid, Ian M Evans, Andrew D Hope, Alan M Pittman, Tammaryn Lashley, Rosa Canet-Aviles, David W Miller, Chris McLendon, Catherine Strand, Andrew J Leonard, Patrick M Abou-Sleiman, Daniel G Healy, Hiroyashi Ariga, Nicholas W Wood, Rohan de Silva, Tamas Revesz, John A Hardy, Andrew J Lees
Brain 2004, 127 (Pt 2): 420-30
14662519
Two mutations in the DJ-1 gene on chromosome1p36 have been identified recently to cause early-onset, autosomal recessive Parkinson's disease. As no information is available regarding the distribution of DJ-1 protein in the human brain, in this study we used a monoclonal antibody for DJ-1 to map its distribution in frontal cortex and substantia nigra, regions invariably involved in Parkinson's disease. Western blotting of human frontal cortex showed DJ-1 to be an abundant protein in control, idiopathic Parkinson's disease, cases with clinical and pathological phenotypes of Parkinson's disease with R98Q polymorphism for DJ-1, and in progressive supranuclear palsy (PSP) brains. We also showed that DJ-1 immunoreactivity (IR) was particularly prominent in astrocytes and astrocytic processes in both control and Parkinson's disease frontal cortex, whereas neurons showed light or no DJ-1 IR. Only occasional Lewy bodies (LBs), the pathological hallmarks of Parkinson's disease, showed faint DJ-1 IR, localized to the outer halo. In preclinical studies we showed that DJ-1 is expressed in primary hippocampal and astrocyte cultures of mouse brain. By 2D gel analysis we also showed multiple pI isoforms for DJ-1 ranging between 5.5-6.6 in both control and Parkinson's disease brains, whilst exposure of M17 cells to the oxidizing agent paraquat was manifested as a shift in pI of endogenous DJ-1 towards more acidic isoforms. We conclude that DJ-1 is not an essential component of LBs and Lewy neurites, is expressed mainly by astrocytes in human brain tissue and is sensitive to oxidative stress conditions. These results are consistent with the hypothesis that neuronal-glial interactions are important in the pathophysiology of Parkinson's disease.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
14662519
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"