Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1.

Pain 2003 December
Clinically, chronic pain and hyperalgesia induced by muscle injury are disabling and difficult to treat. Cellular and molecular mechanisms underlying chronic muscle-induced hyperalgesia are not well understood. For this reason, we developed an animal model where repeated injections of acidic saline into one gastrocnemius muscle produce bilateral, long-lasting mechanical hypersensitivity of the paw (i.e. hyperalgesia) without associated tissue damage. Since acid sensing ion channels (ASICs) are found on primary afferent fibers and respond to decreases in pH, we tested the hypothesis that ASICs on primary afferent fibers innervating muscle are critical to development of hyperalgesia and central sensitization in response to repeated intramuscular acid. Dorsal root ganglion neurons innervating muscle express ASIC3 and respond to acidic pH with fast, transient inward and sustained currents that resemble those of ASICs. Mechanical hyperalgesia produced by repeated intramuscular acid injections is prevented by prior treatment of the muscle with the non-selective ASIC antagonist, amiloride, suggesting ASICs might be involved. ASIC3 knockouts do not develop mechanical hyperalgesia to repeated intramuscular acid injection when compared to wildtype littermates. In contrast, ASIC1 knockouts develop hyperalgesia similar to their wildtype littermates. Extracellular recordings of spinal wide dynamic range (WDR) neurons from wildtype mice show an expansion of the receptive field to include the contralateral paw, an increased response to von Frey filaments applied to the paw both ipsilaterally and contralaterally, and increased response to noxious pinch contralaterally after the second intramuscular acid injection. These changes in WDR neurons do not occur in ASIC3 knockouts. Thus, activation of ASIC3s on muscle afferents is required for development of mechanical hyperalgesia and central sensitization that normally occurs in response to repeated intramuscular acid. Therefore, interfering with ASIC3 might be of benefit in treatment or prevention of chronic hyperalgesia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app