CLINICAL TRIAL
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
VALIDATION STUDY
Add like
Add dislike
Add to saved papers

A novel approach for estimating muscle fiber conduction velocity by spatial and temporal filtering of surface EMG signals.

We describe a new method for the estimation of muscle fiber conduction velocity (CV) from surface electromyography (EMG) signals. The method is based on the detection of two surface EMG signals with different spatial filters and on the compensation of the spatial filtering operations by two temporal filters (with CV as unknown parameter) applied to the signals. The transfer functions of the two spatial filters may have different magnitudes and phases, thus the detected signals have not necessarily the same shape. The two signals are first spatially and then temporally filtered and are ideally equal when the CV value selected as a parameter in the temporal filters corresponds to the velocity of propagation of the detected action potentials. This approach is the generalization of the classic spectral matching technique. A theoretical derivation of the method is provided together with its fast implementation by an iterative method based on the Newton's method. Moreover, the lowest CV estimate among those obtained by a number of filter pairs is selected to reduce the CV bias due to nonpropagating signal components. Simulation results indicate that the method described is less sensitive than the classic spectral matching approach to the presence of nonpropagating signals and that the two methods have similar standard deviation of estimation in the presence of additive, white, Gaussian noise. Finally, experimental signals have been collected from the biceps brachii muscle of ten healthy male subjects with an adhesive linear array of eight electrodes. The CV estimates depended on the electrode location with positive bias for the estimates from electrodes close to the innervation or tendon regions, as expected. The proposed method led to significantly lower bias than the spectral matching method in the experimental conditions, confirming the simulation results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app