JOURNAL ARTICLE

Sorption of polycyclic aromatic hydrocarbons to oil contaminated sediment: unresolved complex?

Michiel T O Jonker, Anja J C Sinke, Jos M Brils, Albert A Koelmans
Environmental Science & Technology 2003 November 15, 37 (22): 5197-203
14655708
Oil is ubiquitous in aquatic sediments and may affect partitioning and bioavailability of hydrophobic organic chemicals (HOCs). In contrast to other sedimentary hydrophobic carbon phases (natural organic matter, soot-like materials), oil residues have hardly received any attention as far as it concerns effects on HOC sorption. This paper describes experimental work dealing with such effects of oil on polycyclic aromatic hydrocarbon (PAH) sorption to sediments. Three different oils were spiked to a marine sediment in concentrations between 0 and 100 g/kg. Sediment-water distribution coefficients (Kd) for six deuterated PAHs were then determined either directly after spiking the oil or after a semi-natural weathering process in the lab (lasting for more than 2 yr). Resulting Kd values demonstrated sorption-reducing (competitive) effects at relatively low oil concentrations and sorption-enhancing effects at high oil concentrations. The latter effects only occurred above a certain threshold [i.e., ca. 15% (w/w) of oil on a sedimentary organic carbon basis] marking the oil concentration at which the hydrocarbon mixture presumably starts forming separate phases. Assuming a two-domain (organic carbon + oil) distribution model, oil-water distribution coefficients (K(oil)) for PAHs were estimated. For fresh oils, log K(oil) values appeared to be very similar for different types of oils, proportional to log K(OW) values and indistinguishable from log K(OC) values. For weathered oils, K(oil) values were also rather independent of the type of oil, but the affinity of low molecular weight PAHs for weathered oil residues appeared to be extremely high, even higher than values reported for most types of soot. Because affinities of high molecular weight PAHs for oils had not changed upon weathering, sorption of all PAHs studied (comprising a log K(OW) range of 4.6-6.9) to the weathered oil residues appeared to be more or less constant (averaged log K(oil) = 7.0 +/- 0.24). These results demonstrate that it is crucial to take the presence of oil and its weathering state into account when assessing the actual fate of PAHs in aquatic environments.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
14655708
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"