JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effects of hypothermic anesthesia of the feet on vibration-induced body sway and adaptation.

The aim of this study was to investigate the significance of information from the plantar cutaneous mechanoreceptors in postural control and whether postural control could compensate for reduced cutaneous information by adaptation. Sixteen healthy subjects were tested with eyes open or eyes closed with hypothermic and normal feet temperature during posturography where body sway was induced by vibratory proprioceptive stimulation towards both calf muscles. The hypothermic anesthesia was obtained by cooling the subject's feet in ice water for 20 minutes. Body movements were evaluated by analyzing the anteroposterior and lateral torques induced towards the supporting surface by a force platform during the posturography tests. The reduction of cutaneous sensor information from the mechanoreceptors of the feet significantly increased the vibration-induced torque variance mainly in the anteroposterior direction. However, the effects of disturbed mechanoreceptors information was rapidly compensated for through postural adaptation and torque variance was in level with that without anesthesia within 50 to 100 seconds of stimulation, both when standing with eyes open and eyes closed. Our findings suggest that somatosensory input from mechanoreceptors in the foot soles contribute significantly in maintaining postural control, but the sensory loss could be compensated for.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app