JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Prevention of age-related spatial memory deficits in a transgenic mouse model of Alzheimer's disease by chronic Ginkgo biloba treatment.

Alzheimer's disease (AD) is characterized by cognitive decline and deposition of beta-amyloid (Abeta) plaques in cortex and hippocampus. A transgenic mouse AD model (Tg2576) that overexpresses a mutant form of human Abeta precursor protein exhibits age-related cognitive deficits, Abeta plaque deposition, and oxidative damage in the brain. We tested the ability of Ginkgo biloba, a flavonoid-rich antioxidant, to antagonize the age-related behavioral impairment and neuropathology exhibited by Tg2576 mice. At 8 months of age, 16 female Tg2576 and 15 female wild-type (wt) littermate mice were given ad lib access to tap water or Ginkgo biloba (70 mg/kg/day in water). After 6 months of treatment, all mice received Morris water maze training (4 trials/day for 10 days) to assess hippocampal dependent spatial learning. All mice received a 60-s probe test of spatial memory retention 24 h after the 40th trial. Untreated Tg2576 mice exhibited a spatial learning impairment, relative to wt mice, while Ginkgo biloba-treated Tg2576 mice exhibited spatial memory retention comparable to wt during the probe test. Spatial learning was not different between Ginkgo biloba-treated and untreated wt mice. There were no group differences in learning to swim to a visible platform. Soluble Abeta and hippocampal Abeta plaque burden did not differ between the Tg2576 groups. Brain levels of protein carbonyls were paradoxically elevated in Ginkgo biloba-treated mice. These data indicate that chronic Ginkgo biloba treatment can block an age-dependent decline in spatial cognition without altering Abeta levels and without suppressing protein oxidation in a transgenic mouse model of AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app