JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Flavopiridol inhibits NF-kappaB activation induced by various carcinogens and inflammatory agents through inhibition of IkappaBalpha kinase and p65 phosphorylation: abrogation of cyclin D1, cyclooxygenase-2, and matrix metalloprotease-9.

Flavopiridol, a synthetic flavone closely related to a compound originally isolated from the stem bark of the native Indian plant Dysoxylum binectariferum, has been found to inhibit cyclin-dependent kinases, induce apoptosis, suppress inflammation, and modulate the immune response. Because several genes in which expression is altered by flavopiridol are regulated by NF-kappaB, we propose that this flavone must affect the activation of NF-kappaB. For this report, we investigated the effect of flavopiridol on NF-kappaB activation by various carcinogens and inflammatory agents. Flavopiridol suppressed tumor necrosis factor (TNF)-activation of NF-kappaB in a dose- and time-dependent manner in several cell types, with optimum inhibition occurring upon treatment of cells with 100 nm flavopiridol for 6 h. This effect was mediated through inhibition of IkappaBalpha kinase, phosphorylation, ubiquitination, and degradation of IkappaBalpha (an inhibitor of NF-kappaB), and suppression of phosphorylation, acylation, and nuclear translocation of the p65 subunit of NF-kappaB. Besides TNF, flavopiridol also suppressed NF-kappaB activated by a carcinogen (cigarette smoke condensate), tumor promoters (phorbol myristate acetate and okadaic acid), and an inflammatory agent (H2O2). TNF-induced NF-kappaB-dependent reporter gene transcription was also suppressed by this flavone. NF-kappaB reporter activity induced by TNF receptor 1, TNF receptor-associated death domain, TNF receptor-associated factor-2, NF-kappaB-inducing kinase, and IkappaBalpha kinase, were all blocked by flavopiridol but not that activated by p65. Furthermore, flavopiridol suppressed TNF-induced activation of Akt. Flavopiridol also inhibited the expression of the TNF-induced NF-kappaB-regulated gene products cyclin D1, cyclooxygenase-2, and matrix metalloproteinase-9. Overall, our results indicated that flavopiridol inhibits activation of NF-kappaB and NF-kappaB-regulated gene expression, which may explain the ability of flavopiridol to suppress inflammation, modulate the immune response, and regulate cell growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app