Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading.

OBJECTIVE: Functional tissue engineering (FTE) of articular cartilage involves the use of physiologically relevant mechanical signals to encourage the growth of engineered constructs. The goal of this study was to determine the utility of deformational loading in enhancing the mechanical properties of chondrocyte-seeded agarose hydrogels, and to investigate the role of initial cell seeding density and nutrient supply in this process.

DESIGN: Chondrocyte-seeded agarose hydrogels were cultured in free-swelling conditions or with intermittent deformational loading (10% deformation, 1 Hz, 1 h on/ 1 h off, 3 h per day, five days per week) over a two-month culture period. Disks were seeded at lower (10 million cells/ml) and higher (60 million cells/ml) seeding densities in the context of a greater medium supply than previous studies (decreasing the number of cells/ml feed medium/day) and with an increasing concentration of fetal bovine serum (10 or 20% FBS).

RESULTS: Under these more optimal nutrient conditions, at higher seeding densities and high serum concentration (20% FBS), dynamically loaded constructs show >2-fold increases in material properties relative to free-swelling controls. After two months of culture, dynamically loaded constructs achieved a Young's modulus of approximately 185 kPa and a dynamic modulus (at 1 Hz) of approximately 1.6 MPa, with a frequency dependent response similar to that of the native tissue. These values represent approximately 3/4 and approximately 1/4 the values measured for the native tissue, respectively. While significant differences were found in mechanical properties, staining and bulk measurements of both proteoglycan and collagen content of higher seeding density constructs revealed no significant differences between free-swelling and loading groups. This finding indicates that deformational loading may act to increase material properties via differences in the structural organization, the production of small linker ECM molecules, or by modulating the size of macromolecular proteoglycan aggregates.

CONCLUSIONS: Taken together, these results point to the utility of dynamic deformational loading in the mechanical preconditioning of engineered articular cartilage constructs and the necessity for increasing feed media volume and serum supplementation with increasing cell seeding densities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app