Add like
Add dislike
Add to saved papers

Purification and characterization of tannin acyl hydrolase from Aspergillus niger MTCC 2425.

The present investigation was carried out for increasing the yield of tannase of Aspergillus niger and the physico-chemical characterization of this enzyme. the extraction of enzyme protein. However, extraction of fungal pigments and proteins was observed to have high pH dependence, and maximum enzyme extraction was obtained at pH 5.5. The two-step purification protocol gave 51-fold purified enzyme with a yield of 20%. The total tannase activity was made up of nearly equal activity of esterase and depsidase. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis of purified tannase protein indicated it to be made up of two polypeptides of molecular weight 102 and 83 kDa. Based on the Michaelis-Menten constant (Km) of tannase for three substrates tested, tannic acid was the best substrate with Km of 2.8 x 10(-4) M, followed by methyl gallate and propyl gallate. The inhibition was maximum for CaCl2 (58%) whereas EDTA had no modulatory effect on tannase activity. The inhibitor binding constant (KI) of CaCl2 was 5.9 x 10(-4) M Homogenization and detergent pretreatments did not have any remarkable effect on and the inhibition was of noncompetitive type.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app