COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Shear stress increases ICAM-1 and decreases VCAM-1 and E-selectin expressions induced by tumor necrosis factor-[alpha] in endothelial cells.

OBJECTIVE: Vascular endothelial cells (ECs) are subjected to shear stress and cytokine stimulation. We studied the interplay between shear stress and cytokine in modulating the expression of adhesion molecule genes in ECs.

METHODS AND RESULTS: Shear stress (20 dynes/cm2) was applied to ECs prior to and/or following the addition of tumor necrosis factor (TNF)-alpha. Shear stress increased the TNF-alpha-induced expression of intercellular adhesion molecule-1 (ICAM-1) at both mRNA and surface protein levels, but decreased the TNF-alpha-induced expression of vascular adhesion molecule-1 (VCAM-1) and E-selectin. Transfection studies using promoter reporter gene constructs of ICAM-1, VCAM-1, and E-selectin demonstrated that these shear stress modulations of gene expression occur at the transcriptional levels. After 24-hour preshearing followed by 1 hour of static incubation, the effect of preshearing on TNF-alpha-induced ICAM-1 mRNA expression vanished. The recovery of the TNF-alpha-induced VCAM-1 and E-selectin mRNA expressions following preshearing, however, required a static incubation time of >6 hours (complete recovery at 24 hours). Pre- and postshearing caused a reduction in the nuclear factor-kappaB-DNA binding activity induced by TNF-alpha in the EC nucleus.

CONCLUSIONS: Our findings suggest that shear stress plays differential roles in modulating the TNF-alpha-induced expressions of ICAM-1 versus VCAM-1 and E-selectin genes in ECs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app