JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hexarelin protects rat cardiomyocytes from angiotensin II-induced apoptosis in vitro.

Loss of cardiomyocytes by apoptosis is proposed to cause heart failure. Angiotensin II (ANG II), an important neurohormonal factor during heart failure, can induce cardiomyocyte apoptosis. Inasmuch as hexarelin has been reported to have protective effects in this process, we examined whether hexarelin can prevent cardiomyocytes from ANG II-induced cell death. Cultured cardiomyocytes from neonatal rats were stimulated with ANG II. Apoptosis was evaluated using fluorescence microscopy, TdT-mediated dUTP nick-end labeling (TUNEL) method, flow cytometry, DNA laddering, and analysis of cell viability by (3,4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). It was found that incubation with 0.1 micromol/l ANG II for 48 h increased cardiomyocyte apoptosis. Administration of 0.1 micromol/l hexarelin significantly decreased this ANG II-induced apoptosis and DNA fragmentation and increased myocyte viability. To further investigate the underlying mechanisms, caspase-3 activity assay and mRNA expression of Bax, Bcl-2, and growth hormone secretagogue receptor (GHS-R; the supposed hexarelin binding site) were examined. GHS-R mRNA was abundantly expressed in cardiomyocytes and was upregulated after administration of hexarelin. These results suggest that hexarelin abates cardiomyocytes from ANG II-induced apoptosis possibly via inhibiting the increased caspase-3 activity and Bax expression induced by ANG II and by increasing the expression of Bcl-2, which is depressed by ANG II. Whether the upregulated expression of GHS-R induced by hexarelin is associated with this antiapoptotic effect deserves further investigation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app