Journal Article
Multicenter Study
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Familial haemolytic uraemic syndrome and an MCP mutation.

Lancet 2003 November 9
BACKGROUND: Mutations in factor H (HF1) have been reported in a consistent number of diarrhoea-negative, non-Shiga toxin-associated cases of haemolytic uraemic syndrome (D-HUS). However, most patients with D-HUS have no HF1 mutations, despite decreased serum concentrations of C3. Our aim, therefore, was to assess whether genetic abnormalities in other complement regulatory proteins are involved.

METHODS: We screened genes that encode the complement regulatory proteins-ie, factor H related 5, complement receptor 1, and membrane cofactor protein (MCP)-by PCR-single-strand conformation polymorphism (PCR-SSCP) and by direct sequencing, in 25 consecutive patients with D-HUS, an abnormal complement profile, and no HF1 mutation, from our International Registry of Recurrent and Familial HUS/TTP (HUS/thrombotic thrombocytopenic purpura).

FINDINGS: We identified a heterozygous mutation in MCP, a surface-bound complement regulator, in two patients with a familial history of HUS. The mutation causes a change in three aminoacids at position 233-35 and insertion of a premature stop-codon, which results in loss of the transmembrane domain of the protein and severely reduced cell-surface expression of MCP.

INTERPRETATION: Results of previous studies on HF1 indicate an association between HF1 deficiency and D-HUS. Our findings of an MCP mutation in two related patients suggest that impaired regulation of complement activation might be a factor in the pathogenesis of genetic forms of HUS. MCP could be a second putative candidate gene for D-HUS. The protein is highly expressed in the kidney and plays a major part in regulation of glomerular C3 activation. We propose, therefore, that reduced expression of MCP in response to complement-activating stimuli could prevent restriction of complement deposition on glomerular endothelial cells, leading to microvascular cell damage and tissue injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app