Add like
Add dislike
Add to saved papers

Pharmacological characterization of CP-547,632, a novel vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for cancer therapy.

Cancer Research 2003 November 2
Signaling through vascular endothelial growth factor (VEGF) receptors (VEGFRs) is a key pathway initiating endothelial cell proliferation and migration resulting in angiogenesis, a requirement for human tumor growth and metastasis. Abrogation of signaling through VEGFR by a variety of approaches has been demonstrated to inhibit angiogenesis and tumor growth. Small molecule inhibitors of VEGFR tyrosine kinase have been shown to inhibit angiogenesis, inhibit tumor growth, and prevent metastases. Our goal was to discover and characterize an p.o. active VEGFR-2 small molecule inhibitor. A novel isothiazole, CP-547,632, was identified as a potent inhibitor of the VEGFR-2 and basic fibroblast growth factor (FGF) kinases (IC(50) = 11 and 9 nM, respectively). It is selective relative to epidermal growth factor receptor, platelet-derived growth factor beta, and other related TKs. It also inhibits VEGF-stimulated autophosphorylation of VEGFR-2 in a whole cell assay with an IC(50) value of 6 nM. After oral administration of CP-547,632 to mice bearing NIH3T3/H-ras tumors, VEGFR-2 phosphorylation in tumors was inhibited in a dose-dependent fashion (EC(50) = 590 ng/ml). These plasma concentrations correlated well with the observed concentrations of the compound necessary to inhibit VEGF-induced corneal angiogenesis in BALB/c mice. A sponge angiogenesis assay was used to directly compare the inhibitory activities of CP-547,632 against FGF receptor 2 or VEGFR-2; this compound potently inhibits both basic FGF and VEGF-induced angiogenesis in vivo. The antitumor efficacy of this agent was evaluated after once daily p.o. administration to athymic mice bearing human xenografts and resulted in as much as 85% tumor growth inhibition. CP-547,632 is a well-tolerated, orally-bioavailable inhibitor presently under clinical investigation for the treatment of human malignancies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app