JOURNAL ARTICLE

Impact of acute hypoxic pulmonary hypertension on LV diastolic function in healthy mountaineers at high altitude

Yves Allemann, Martin Rotter, Damian Hutter, Ernst Lipp, Claudio Sartori, Urs Scherrer, Christian Seiler
American Journal of Physiology. Heart and Circulatory Physiology 2004, 286 (3): H856-62
14604853
In pulmonary hypertension right ventricular pressure overload leads to abnormal left ventricular (LV) diastolic function. Acute high-altitude exposure is associated with hypoxia-induced elevation of pulmonary artery pressure particularly in the setting of high-altitude pulmonary edema. Tissue Doppler imaging (TDI) allows assessment of LV diastolic function by direct measurements of myocardial velocities independently of cardiac preload. We hypothesized that in healthy mountaineers, hypoxia-induced pulmonary artery hypertension at high altitude is quantitatively related to LV diastolic function as assessed by conventional and TDI Doppler methods. Forty-one healthy subjects (30 men and 11 women; mean age 41 +/- 12 yr) underwent transthoracic echocardiography at low altitude (550 m) and after a rapid ascent to high altitude (4,559 m). Measurements included the right ventricular to right atrial pressure gradient (DeltaP(RV-RA)), transmitral early (E) and late (A) diastolic flow velocities and mitral annular early (E(m)) and late (A(m)) diastolic velocities obtained by TDI at four locations: septal, inferior, lateral, and anterior. At a high altitude, DeltaP(RV-RA) increased from 16 +/- 7 to 44 +/- 15 mmHg (P < 0.0001), whereas the transmitral E-to-A ratio (E/A ratio) was significantly lower (1.11 +/- 0.27 vs. 1.41 +/- 0.35; P < 0.0001) due to a significant increase of A from 52 +/- 15 to 65 +/- 16 cm/s (P = 0.0001). DeltaP(RV-RA) and transmitral E/A ratio were inversely correlated (r(2) = 0.16; P = 0.0002) for the whole spectrum of measured values (low and high altitude). Diastolic mitral annular motion interrogation showed similar findings for spatially averaged (four locations) as well as for the inferior and septal locations: A(m) increased from low to high altitude (all P < 0.01); consequently, E(m)/A(m) ratio was lower at high versus low altitude (all P < 0.01). These intraindividual changes were reflected interindividually by an inverse correlation between DeltaP(RV-RA) and E(m)/A(m) (all P < 0.006) and a positive association between DeltaP(RV-RA) and A(m) (all P < 0.0009). In conclusion, high-altitude exposure led to a two- to threefold increase in pulmonary artery pressure in healthy mountaineers. This acute increase in pulmonary artery pressure led to a change in LV diastolic function that was directly correlated with the severity of pulmonary hypertension. However, in contrast to patients suffering from some form of cardiopulmonary disease and pulmonary hypertension, in these healthy subjects, overt LV diastolic dysfunction was not observed because it was prevented by augmented atrial contraction. We propose the new concept of compensated diastolic (dys)function.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
14604853
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"