JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Squamous cell carcinoma and mammary abscess formation through squamous metaplasia in Smad4/Dpc4 conditional knockout mice.

Development 2003 December
Smad4 is a central mediator for TGFbeta signals, which play important functions in many biological processes. To study the role of Smad4 in mammary gland development and neoplasia, we disrupted this gene in mammary epithelium using a Cre-loxP approach. Smad4 is expressed in the mammary gland throughout development; however, its inactivation did not cause abnormal development of the gland during the first three pregnancies. Instead, lack of Smad4 gradually induced cell proliferation, alveolar hyperplasia and transdifferentiation of mammary epithelial cells into squamous epithelial cells. Consequently, all mutant mice developed squamous cell carcinoma and/or mammary abscesses between 5 and 16 months of age. We demonstrated that absence of Smad4 resulted in beta-catenin accumulation at onset and throughout the process of transdifferentiation, implicating beta-catenin, a key component of the Wnt signaling pathway, in the development of squamous metaplasia in Smad4-null mammary glands. We further demonstrated that TGFbeta1 treatment degraded beta-catenin and induced epithelial-mesenchymal transformation in cultured mammary epithelial cells. However, such actions were blocked in the absence of Smad4. These findings indicate that TGFbeta/Smad4 signals play a role in cell fate maintenance during mammary gland development and neoplasia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app