Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Spatial approximation between the amino terminus of a peptide agonist and the top of the sixth transmembrane segment of the secretin receptor.

Distinct spatial approximations between residues within the secretin pharmacophore and its receptor can provide important constraints for modeling this agonist-receptor complex. We previously used a series of probes incorporating photolabile residues into positions 6, 12, 13, 14, 18, 22, and 26 of the 27-residue peptide and demonstrated that each covalently labeled a site within the receptor amino terminus. Although supporting a critical role of this domain for ligand binding, it does not explain the molecular mechanism of receptor activation. Here, we developed probes having photolabile residues at the amino terminus of secretin to explore possible approximations with a different receptor domain. The first probe incorporated a photolabile p-benzoyl-l-phenylalanine into the position of His(1) of rat secretin ([Bpa(1),Tyr(10)]secretin-27). Because His(1) is critical for function, we also positioned a photolabile Bpa as an amino-terminal extension, in positions -1 (rat [Bpa(-1),Tyr(10)]secretin-27) and -2 (rat [Bpa(-2),Gly(-1),Tyr(10)]secretin-27). Each analog was shown to be a full agonist, stimulating cAMP accumulation in receptor-bearing Chinese hamster ovary-SecR cells in a concentration-dependent manner, with the position -2 probe being most potent. They bound specifically and saturably, although the position 1 analog had lowest affinity, and all were able to label the receptor efficiently. Sequential specific cleavage, purification, and sequencing demonstrated that the sites of covalent attachment for each probe were high within the sixth transmembrane segment. This suggests that secretin binding may exert tension between the receptor amino terminus and the transmembrane domain to elicit a conformational change effecting receptor activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app