Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Characterization of mu opioid receptor binding and G protein coupling in rat hypothalamus, spinal cord, and primary afferent neurons during inflammatory pain.

Peripheral analgesic effects of opioids are pronounced under inflammatory conditions, e.g., arthritis; however, little is known about adaptive changes of micro opioid receptor binding and G protein coupling in the peripheral versus central nervous system. The present study investigated the effects of inflammation on mu opioid receptor (MOP receptor) binding and G protein coupling of supraspinal, spinal, and peripheral MOP receptors. In addition, MOP receptors were identified in immunohistochemical experiments in dorsal root ganglia (DRG) of inflamed and noninflamed rats. The number of MOP receptor binding sites decreased from hypothalamus (HT) > spinal cord (SC) > DRG. Unilateral Freund's complete adjuvant inflammation of one hindpaw induced a significant up-regulation of MOP receptor sites only in DRG but not in HT or SC. This up-regulation was time-dependent, restricted to the inflamed side, and showed a peak at 24 h. The full-agonist [D-Ala(2),N-MePhe(4),Gly(5)-ol]-enkephalin (DAMGO) induced MOP receptor G protein coupling with decreasing efficacies (E(max)) from HT > SC > DRG. Inflammation resulted in significant increases in MOP receptor G protein coupling only in membranes of DRG, but not in HT, SC, or DRG on the contralateral side of inflammation. This suggests that changes in MOP receptor levels are not related to systemically released mediators. These findings show that inflammation causes changes in MOP receptor binding and G protein coupling after DAMGO stimulation selectively in primary afferent neurons but did not cause any adaptive changes of MOP receptor in HT or SC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app