Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A comparison of the decontamination efficacy of foam-making blends based on cationic and nonionic tensides against organophosphorus compounds determined in vitro and in vivo.

The ability of foam-making blends to decontaminate the skin exposed to organophosphorus compounds was tested. The appropriate composition and rheological features (stability, grade of foaming) of tested blends were evaluated by in vitro methods and their ability to remove the contaminants from hard surface and to transform the contaminants into nontoxic compounds was evaluated by in vivo methods. The blends containing cationic and nonionic tensides as well as alkalized hydrogen peroxide seem to be the most efficacious to decontaminate the skin exposed to organophosphorus compounds according to the literature data. The composition of tested blends was optimized because particular components often have antagonistic effects. Cationic tensides support the reactivity of the blend and control the grade of foaming. Nonionic tensides control the stability of the foams but also react as retardants of the reactivity of the foams. Hydrogen peroxide is a real reacting component when it is transformed into hydrogen peroxide anion. It also acts as buffer if pH is higher than 11. Our in vivo results confirm that Desam OX (34 and 68%) and the foam-making blend containing benzalkonium chloride--Althosan MB (8%), Slovasol 2510 (2%) and hydrogen peroxide (3%) alkalized at pH 12 seem to be the most efficacious to remove contaminants (soman, VX) from the skin and transform them into nontoxic compounds. Therefore they could be used for primary decontamination of chemical casualties contaminated with nerve agents in the field condition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app