JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A T-cell epitope encoded by a subset of HLA-DPB1 alleles determines nonpermissive mismatches for hematologic stem cell transplantation.

Blood 2004 Februrary 16
The importance of HLA-DPB1 matching for the outcome of allogeneic hematologic stem cell (HSC) transplantation is controversial. We have previously identified HLA-DPB1*0901 as a target of cytotoxic T cells mediating in vivo rejection of an HSC allograft. Here we show that HLA-DPB1*0901 encodes a T-cell epitope shared by a subset of DPB1 alleles that determines nonpermissive mismatches for HSC transplantation. Several T-cell clones obtained from the patient at the time of rejection showed HLA-DP restricted recognition of allogeneic targets expressing HLA-DPB1*0901, *1001, *1701, *0301, *1401, and *4501, but not other alleles. Based on these findings, we developed an algorithm for prediction of nonpermissive HLA-DPB1 mismatches. Retrospective evaluation of 118 transplantations showed that the presence of nonpermissive HLA-DPB1 mismatches was correlated with significantly increased hazards of acute grade II to IV graft-versus-host disease (HR = 1.87, P =.046) and transplantation-related mortality (HR = 2.69, P =.027) but not relapse (HR = 0.98, P =.939), as compared with the permissive group. There was also a marked but statistically not significant increase in the hazards of overall mortality (HR = 1.64, P =.1). These data suggest that biologic characterization of in vivo alloreactivity can be a tool for definition of clinically relevant nonpermissive HLA mismatches for unrelated HSC transplantation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app