CLINICAL TRIAL
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Cerebral autoregulation is compromised during simulated fluctuations in gravitational stress.

Gravity places considerable stress on the cardiovascular system but cerebral autoregulation usually protects the cerebral blood vessels from fluctuations in blood pressure. However, in conditions such as those encountered on board a high-performance aircraft, the gravitational stress is constantly changing and might compromise cerebral autoregulation. In this study we assessed the effect of oscillating orthostatic stress on cerebral autoregulation. Sixteen (eight male) healthy subjects [aged 27 (1) years] were exposed to steady-state lower body negative pressure (LBNP) at -15 and -40 mmHg and then to oscillating LBNP at the same pressures. The oscillatory LBNP was applied at 0.1 and 0.2 Hz. We made continuous recordings of RR-interval, blood pressure, cerebral blood flow velocity (CBFV), respiratory frequency and end-tidal CO(2). Oscillations in mean arterial pressure (MAP) and CBFV were assessed by autoregressive spectral analysis. Respiration was paced at 0.25 Hz to avoid interference from breathing. Steady-state LBNP at -40 mmHg significantly increased low-frequency (LF, 0.03-0.14 Hz) powers of MAP ( P<0.01) but not of CBFV. Oscillatory 0.1 Hz LBNP (0 to -40 mmHg) significantly increased the LF power of MAP to a similar level as steady-state LBNP but also resulted in a significant increase in the LF power of CBFV ( P<0.01). Oscillatory LBNP at 0.2 Hz induced oscillations in MAP and CBFV at 0.2 Hz. Cross-spectral analysis showed that the transfer of LBNP-induced oscillations in MAP onto the CBFV was significantly greater at 0.2 Hz than at 0.1 Hz ( P<0.01). These results show that the ability of the cerebral vessels to modulate fluctuations in blood pressure is compromised during oscillatory compared with constant gravitational stress. Furthermore, this effect seems to be more pronounced at higher frequencies of oscillatory stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app