JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Knockout of the alpha2 but not alpha1 5'-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle.

We investigated the importance of the two catalytic alpha-isoforms of the 5'-AMP-activated protein kinase (AMPK) in 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) and contraction-induced glucose uptake in skeletal muscle. Incubated soleus and EDL muscle from whole-body alpha2- or alpha1-AMPK knockout (KO) and wild type (WT) mice were incubated with 2.0 mm AICAR or electrically stimulated to contraction. Both AICAR and contraction increased 2DG uptake in WT muscles. KO of alpha2, but not alpha1, abolished AICAR-induced glucose uptake, whereas neither KO affected contraction-induced glucose uptake. AICAR and contraction increased alpha2- and alpha1-AMPK activity in wild type (WT) muscles. During AICAR stimulation, the remaining AMPK activity in KO muscles increased to the same level as in WT. During contraction, the remaining AMPK activity in alpha2-KO muscles was elevated by 100% probably explained by a 2-3-fold increase in alpha1-protein. In alpha1-KO muscles, alpha2-AMPK activity increased to similar levels as in WT. Both interventions increased total AMPK activity, as expressed by AMPK-P and ACCbeta-P, in WT muscles. During AICAR stimulation, this was dramatically reduced in alpha2-KO but not in alpha1-KO, whereas during contraction, both measurements were essentially similar to WT in both KO-muscles. The results show that alpha2-AMPK is the main donor of basal and AICAR-stimulated AMPK activity and is responsible for AICAR-induced glucose uptake. In contrast, during contraction, the two alpha-isoforms seem to substitute for each other in terms of activity, which may explain the normal glucose uptake despite the lack of either alpha2- or alpha1-AMPK. Alternatively, neither alpha-isoform of AMPK is involved in contraction-induced muscle glucose uptake.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app