Comparative Study
Evaluation Studies
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Validation Studies
Add like
Add dislike
Add to saved papers

Electrical frequency dependent characterization of DNA hybridization.

The hybridization of oligomeric DNA was investigated using the frequency dependent techniques of electrochemical impedance spectroscopy (EIS) and quartz crystal microgravimetry (QCM). Synthetic 5'-amino terminated single stranded oligonucleotides (ssDNA) were attached to the exposed glass surface between the digits of microlithographically fabricated interdigitated microsensor electrodes using 3-glycidoxypropyl-trimethoxysilane. Similar ssDNA immobilization was achieved to the surface of the gold driving electrodes of AT-cut quartz QCM crystals using 3-mercaptopropyl-trimethoxysilane. Significant changes in electrochemical impedance values (both real and imaginary components) (11% increase in impedance modulus at 120 Hz) and resonant frequency values (0.004% decrease) were detected as a consequence of hybridization of the bound ssDNA upon exposure to its complement under hybridization conditions. Non-complementary (random) sequence sowed a modest decrease in impedance and a non-detectable change in resonant frequency. The possibility to detect the binding state of DNA in the vicinity of an electrode, without a direct connection between the measurement electrode and the DNA, has been demonstrated. The potential for development of label-free, low density DNA microarrays is demonstrated and is being pursued.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app