15-deoxy-delta-12-14-PGJ2 regulates apoptosis induction and nuclear factor-kappaB activation via a peroxisome proliferator-activated receptor-gamma-independent mechanism in hepatocellular carcinoma

Hiroshi Okano, Katsuya Shiraki, Hidekazu Inoue, Yutaka Yamanaka, Tomoyuki Kawakita, Yukiko Saitou, Yumi Yamaguchi, Naoyuki Enokimura, Norihiko Yamamoto, Kazushi Sugimoto, Kazumoto Murata, Takeshi Nakano
Laboratory Investigation; a Journal of Technical Methods and Pathology 2003, 83 (10): 1529-39
The peroxisome proliferator-activated receptor-gamma (PPARgamma) high-affinity ligand, 15-deoxy-Delta-12,14-PGJ(2) (15d-PGJ(2)), is toxic to malignant cells through cell cycle arrest and apoptosis induction. In this study, we investigated the effects of 15d-PGJ(2) on apoptosis induction and expression of apoptosis-related proteins in hepatocellular carcinoma (HCC) cells. 15d-PGJ(2) induced apoptosis in SK-Hep1 and HepG2 cells at a 50 micro M concentration. Pretreatment with the pan-caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethyl ketone (2-VAD-fmk), only partially blocked apoptosis induced by 40 micro M 15d-PGJ(2). This indicated that 15d-PGJ(2) induction of apoptosis was associated with a caspase-3-independent pathway. 15d-PGJ(2) also induced down-regulation of the X chromosome-linked inhibitor of apoptosis (XIAP), Bclx, and apoptotic protease-activating factor-1 in SK-Hep1 cells but not in HepG2 cells. However, 15d-PGJ(2) sensitized both HCC cell lines to TNF-related apoptosis-induced ligand-induced apoptosis. In SK-Hep1 cells, cell toxicity, nuclear factor-kappaB (NF-kappaB) suppression, and XIAP down-regulation were induced by 15d-PGJ(2) treatment under conditions in which PPARgamma was down-regulated. These results suggest that the effect of 15d-PGJ(2) was through a PPARgamma-independent mechanism. Although cell toxicity was induced when PPARgamma was down-regulated in HepG2 cells, NF-kappaB suppression and XIAP down-regulation were not induced. In conclusion, 15d-PGJ(2) induces apoptosis of HCC cell lines via caspase-dependent and -independent pathways. In SK-Hep1 cells, the ability of 15d-PGJ(2) to induce cell toxicity, NF-kappaB suppression, or XIAP down-regulation seemed to occur via a PPARgamma-independent mechanism, but in HepG2 cells, NF-kappaB suppression by 15d-PGJ(2) was dependent on PPARgamma.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"