Differential distribution of DNA methylation within the RASSF1A CpG island in breast cancer

Pearlly S Yan, Huidong Shi, Farahnaz Rahmatpanah, Timothy H-C Hsiau, Andrew H-A Hsiau, Yu-Wei Leu, Joseph C Liu, Tim Hui-Ming Huang
Cancer Research 2003 October 1, 63 (19): 6178-86
Aberrant DNA methylation of promoter CpG islands is associated with transcriptionally repressive heterochromatin in neoplasia. The dynamics of this epigenetic process in mediating the transition from an active to an inactive state of transcription remains to be elucidated, however. Here, we used the methylation-specific oligonucleotide microarray to map the methylation patterns of a CpG island, located within the promoter and the first exon regions of RASSF1A, in normal breast tissue controls, primary tumors, and breast cancer cell lines. Oligonucleotide pairs, spaced along the CpG island region, were designed to discriminate between methylated and unmethylated alleles of selected sites. The methylation-specific oligonucleotide data indicate that the majority of test samples show widespread methylation in the first exon of RASSF1A. In contrast, the promoter area was usually undermethylated in normal controls and in 32% of the primary tumors tested, whereas the rest of the primary tumors and breast cancer cell lines showed various degrees of methylation in the region. Methylation profiling of individual tumors further suggest that DNA methylation progressively spreads from the first exon into the promoter area of this gene. Functional analysis indicates that increased density of RASSF1A promoter methylation is associated with altered chromatin, marked by a depletion of acetylated histones and methylated histone 3-lysine 4 and an enrichment of methylated histone 3-lysine 9 in the studied area. The combination of these epigenetic modifications may engender a stable silencing of the gene in breast cancer cells. Thus, this study underscores the importance of detailed mapping of methylation patterns within a CpG island locus that may provide insights into the progressive nature of aberrant DNA methylation and its relationship with transcriptional silencing during the neoplastic process.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"