JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Differential distribution of DNA methylation within the RASSF1A CpG island in breast cancer.

Cancer Research 2003 October 2
Aberrant DNA methylation of promoter CpG islands is associated with transcriptionally repressive heterochromatin in neoplasia. The dynamics of this epigenetic process in mediating the transition from an active to an inactive state of transcription remains to be elucidated, however. Here, we used the methylation-specific oligonucleotide microarray to map the methylation patterns of a CpG island, located within the promoter and the first exon regions of RASSF1A, in normal breast tissue controls, primary tumors, and breast cancer cell lines. Oligonucleotide pairs, spaced along the CpG island region, were designed to discriminate between methylated and unmethylated alleles of selected sites. The methylation-specific oligonucleotide data indicate that the majority of test samples show widespread methylation in the first exon of RASSF1A. In contrast, the promoter area was usually undermethylated in normal controls and in 32% of the primary tumors tested, whereas the rest of the primary tumors and breast cancer cell lines showed various degrees of methylation in the region. Methylation profiling of individual tumors further suggest that DNA methylation progressively spreads from the first exon into the promoter area of this gene. Functional analysis indicates that increased density of RASSF1A promoter methylation is associated with altered chromatin, marked by a depletion of acetylated histones and methylated histone 3-lysine 4 and an enrichment of methylated histone 3-lysine 9 in the studied area. The combination of these epigenetic modifications may engender a stable silencing of the gene in breast cancer cells. Thus, this study underscores the importance of detailed mapping of methylation patterns within a CpG island locus that may provide insights into the progressive nature of aberrant DNA methylation and its relationship with transcriptional silencing during the neoplastic process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app