COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Local delivery of minocycline and systemic BCNU have synergistic activity in the treatment of intracranial glioma.

Minocycline, a tetracycline derivative, has been shown to inhibit tumor angiogenesis through inhibitory effects on matrix metalloproteinases. Previous studies have shown this agent to be effective against a rodent brain tumor model when delivered intracranially and to potentiate the efficacy of standard chemotherapeutic agents. In the present study, the in vivo efficacy of intracranial minocycline delivered by a biodegradable controlled-release polymer against rat intracranial 9L gliosarcoma was investigated to determine whether it potentiates the effects of systemic 1,3-bis (2-chloroethyl)-1-nitrosourea (BCNU). Minocycline was incorporated into the biodegradable polymer polyanhydride poly[bis(p-carboxyphenoxy)propane-sebacic acid] (pCPP:SA) at a ratio of 50:50 by weight. The release kinetics of minocycline from the polymer were assessed. For the efficacy studies, female Fischer 344 rats were implanted with 9L glioma. Treatment with minocycline delivered by the pCPP:SA polymer at the time of tumor implantation resulted in 100% survival in contrast to untreated control animals that died within 21 days. Treatment with the minocycline-polymer 5 days after tumor implantation provided only modest increases in survival. The combination of intracranial minocycline and systemic BCNU extended median survival by 82% compared to BCNU alone (p < 0.0001) and 200% compared to no treatment (p < 0.004). We conclude that local intracranial delivery of minocycline from biodegradable controlled-release polymers inhibits tumor growth and may have clinical utility when combined with a chemotherapeutic agent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app