Comparative Study
Evaluation Studies
Journal Article
Validation Studies
Add like
Add dislike
Add to saved papers

Prediction of regulatory networks: genome-wide identification of transcription factor targets from gene expression data.

Bioinformatics 2003 October 13
MOTIVATION: Defining regulatory networks, linking transcription factors (TFs) to their targets, is a central problem in post-genomic biology. One might imagine one could readily determine these networks through inspection of gene expression data. However, the relationship between the expression timecourse of a transcription factor and its target is not obvious (e.g. simple correlation over the timecourse), and current analysis methods, such as hierarchical clustering, have not been very successful in deciphering them.

RESULTS: Here we introduce an approach based on support vector machines (SVMs) to predict the targets of a transcription factor by identifying subtle relationships between their expression profiles. In particular, we used SVMs to predict the regulatory targets for 36 transcription factors in the Saccharomyces cerevisiae genome based on the microarray expression data from many different physiological conditions. We trained and tested our SVM on a data set constructed to include a significant number of both positive and negative examples, directly addressing data imbalance issues. This was non-trivial given that most of the known experimental information is only for positives. Overall, we found that 63% of our TF-target relationships were confirmed through cross-validation. We further assessed the performance of our regulatory network identifications by comparing them with the results from two recent genome-wide ChIP-chip experiments. Overall, we find the agreement between our results and these experiments is comparable to the agreement (albeit low) between the two experiments. We find that this network has a delocalized structure with respect to chromosomal positioning, with a given transcription factor having targets spread fairly uniformly across the genome.

AVAILABILITY: The overall network of the relationships is available on the web at https://bioinfo.mbb.yale.edu/expression/echipchip

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app