JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Inhibition of RANKL-induced osteoclast formation in mouse bone marrow cells by IL-12: involvement of IFN-gamma possibly induced from non-T cell population.

Bone 2003 October
IL-12 was shown to have the potential to inhibit osteoclast formation in mouse bone marrow cells treated with macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-kappaB ligand (RANKL). When bone marrow macrophages (BMM) were used as osteoclast precursors, IL-12 failed to inhibit M-CSF/RANKL-induced osteoclast formation from BMM. In coculture experiments using transwells, IL-12 did inhibit osteoclast formation from BMM cocultured with whole bone marrow cells. These results indicated that IL-12 indirectly affected M-CSF/RANKL-induced osteoclastogenesis in bone marrow cells and that the inhibition of IL-12 on osteoclast formation was caused by a humoral factor from bone marrow cells treated with IL-12. Experiments with anti-interferon (IFN)-gamma antibody and bone marrow cells from IFN-gamma receptor knockout mice revealed that IFN-gamma might be involved in the inhibition of osteoclast formation in this system. The expression of osteoprotegerin mRNA in bone marrow cells was not affected by treatment with IL-12. The inhibitory effect of IL-12 on osteoclast formation was also seen in the T cell-depleted bone marrow cells of normal mice and the whole bone marrow cells of athymic nude mice, while the inhibitory effect of IL-12 was partially suppressed in the B cell-depleted bone marrow cells. The inhibitory effect of IL-12 on M-CSF/RANKL-induced osteoclastogenesis was not accompanied with cell death, in contrast with our previous finding that the inhibitory effect of IL-12 on M-CSF/TNF-alpha-induced osteoclastogenesis is attributable to Fas and FasL-mediated apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app