Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Fed-batch and batch operating mode analysis of a stirred anaerobic sequencing reactor with self-immobilized biomass treating low-strength wastewater.

This work presents an analysis of a stirred anaerobic sequencing discontinuous reactor with different substrate feeding strategies resulting in batch, fed-batch/batch and fed-batch operating modes. The reactor, containing granulated biomass, was fed with approximately 2.0L of synthetic domestic wastewater with Chemical Oxygen Demand of nearly 500 mg/L per cycle and operated at 30 degrees C and 50 rpm. Three feeding strategies with a total cycle time of 6 h, including 30-min settling, were adopted: batch mode with a fill cycle of 6 min, a fed-batch/batch mode with fill cycles of 60, 120 and 240 min and fed-batch mode with a fill cycle of 320 min. The system attained average non-filtered and filtered substrate removal efficiency of 78 and 84%, respectively, for all operating conditions, presenting good stability, solid retention and no granule break-up. A first order kinetic model with a residual organic matter concentration was proposed to analyze the influence of the feeding strategy on the performance during a cycle and bicarbonate alkalinity and total volatile acids concentration profiles were also quantified in order to verify the transient stability behavior.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app