Comparative Study
Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Comparison of [Dmt1]DALDA and DAMGO in binding and G protein activation at mu, delta, and kappa opioid receptors.

[Dmt1]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2; Dmt = 2',6'-dimethyltyrosine) binds with high affinity and selectivity to the mu opioid receptor and is a surprisingly potent and long-acting analgesic, especially after intrathecal administration. In an attempt to better understand the unique pharmacological profile of [Dmt1]DALDA, we have prepared [3H][Dmt1]DALDA and compared its binding properties with that of [3H]DAMGO ([d-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin). Kinetic studies revealed rapid association of [3H][Dmt1]DALDA when incubated with mouse brain membranes (K+1 = 0.155 nM(-1) min(-1)). Dissociation of [3H][Dmt1]DALDA was also rapid (K(-1) = 0.032 min(-1)) and indicated binding to a single site. [3H][Dmt1]DALDA binds with very high affinity to human mu opioid receptor (hMOR) (Kd = 0.199 nM), and Kd and Bmax were reduced by sodium but not Gpp(NH)p [guanosine 5'-(beta,gamma-imido)triphosphate]. Similar Kd values were obtained in brain and spinal cord tissues and SH-SY5Y cells. The hMOR:hDOR (human delta opioid receptor) selectivity of [Dmt1]DALDA ( approximately 10,000) is 8-fold higher than DAMGO. However, [Dmt1]DALDA is less selective than DAMGO against hKOR (human kappa opioid receptor) (26-versus 180-fold). The Ki values for a number of opioid ligands were generally higher when determined by competitive displacement binding against [3H][Dmt1]DALDA compared with [3H]DAMGO, with the exception of Dmt1-substituted peptide analogs. All Dmt1 analogs showed much higher affinity for the mu receptor than corresponding Tyr1 analogs. [35S]GTPgammaS (guanosine 5'-O -(3-[35S]thio)triphosphate) binding showed that [Dmt1]DALDA and DAMGO are full agonists at hMOR and hDOR but are only partial agonists at hKOR. The very high affinity and selectivity of [3H][Dmt1]DALDA for the mu receptor, together with its very low nonspecific binding (10-15%) and metabolic stability, make [3H][Dmt1]DALDA an ideal radioligand for labeling mu receptors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app