COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Photochemical degradation and mineralization of phenol: a comparative study.

In this study, photochemical advanced oxidation processes (AOPs) utilizing the combinations of UV, UV/H2O2, and UV/H2O2/Fe2+ (Photo-Fenton process) were investigated in lab-scale experiments for the degradation and mineralization of phenol. The major parameters investigated were the initial phenol concentration, pH, hydrogen peroxide, and iron doses, and the effect of the presence of radical scavengers (PO4(-3), SO4(-2), and Cl- ions). It was observed that the phenol degradation efficiency decreased with increasing phenol concentration and pH in UV process. Maximum phenol oxidation efficiency for an initial concentration of 100 mg L(-1) and at pH 3 was around 30% in direct photolysis. The efficiency increased to 97% with UV/H2O2 process, however, there was still negligible mineralization (9%) and the required irradiation time was still long (300 min). The results showed that the Photo-Fenton process was the most effective treatment process under acidic conditions. Complete disappearance of 100 mg L(-1) phenol was achieved in 2.5 min and almost complete mineralization (97%) was also possible after 300 min of irradiation. The efficiency was negatively affected from H2O2 in UV/H2O2 process and Fe2+ in Photo-Fenton process over a certain concentration. The highest negative effect was observed with solution containing PO4(-3) ions. Required reaction time for complete disappearance of 100 mg L(-1) phenol increased from 2.5 min for an ion-free solution to 60 min for that containing PO4(-3). The photodegradation of phenol was found to follow the first-order law.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app