Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia.

Microglial cells are the host macrophages in the central nervous system and respond to brain injury and various neurological diseases. In this process, microglial cells undergo multiple morphological and functional changes from the resting cell toward a fully activated, phagocyting tissue macrophage. In culture, bacterial lipopolysaccharide (LPS) is a frequently used tool to induce this activation. By using calcium-imaging and patch-clamp techniques, we investigated the effect of hydrogen peroxide (H2O2), which is released by macrophagic cells themselves, on the intracellular calcium concentration and ion currents in cultured rat microglia. Application of 0.1-5 mM H2O2 for several minutes induced small responses in untreated cells but a large calcium influx and cation current in LPS-treated cells. In both untreated and LPS-treated microglia, internal perfusion of ADP-ribose (ADPR) via the patch pipette elicited large cation currents. Both stimuli, H2O2 and ADPR, have been reported to activate the recently cloned nonselective cation channel TRPM2. RT-PCR analysis from cultured rat glial and neuronal cells confirmed a strong expression of TRPM2 in rat microglia but not in astrocytes and cerebellar granule cells. In situ hybridizations from mouse brain showed a distribution of TRPM2, which is compatible with the expression in microglial cells. In conclusion, we describe here a novel calcium influx pathway in microglia coupled to hydrogen peroxide and ADPR and provide evidence that this pathway involves TRPM2. The increased sensitivity to H2O2 in LPS-stimulated cells suggests a role for TRPM2 in the calcium signaling of activated microglia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app